Task-specific recruitment of dorsal and ventral visual areas during tactile perception.
نویسندگان
چکیده
Many studies have found that visual cortical areas are active during tactile perception. Here we used positron emission tomographic (PET) scanning in normally sighted humans to show that extrastriate cortical regions are recruited in a task-specific manner during perceptual processing of tactile stimuli varying in two dimensions. Mental rotation of tactile Forms activated a focus around the anterior part of the left intraparietal sulcus. Since prior studies have reported activity nearby during mental rotation of visual stimuli, this focus appears to be associated with the dorsal visual (visuospatial) pathway. Discrimination between tactile Forms activated the right lateral occipital complex, an object-selective region in the ventral visual (visual Form) pathway. Thus, tactile tasks appear to recruit cortical regions that are active during corresponding visual tasks. Activation of these areas in both visual and tactile tasks could reflect visual imagery during tactile perception, activity in multisensory representations, or both.
منابع مشابه
Crossmodal Recruitment of the Ventral Visual Stream in Congenital Blindness
We used functional MRI (fMRI) to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform a tactile-form recognition task with the tongue display unit (TDU). Both groups learned the task at the sa...
متن کاملHuman fMRI Reveals That Delayed Action Re-Recruits Visual Perception
Behavioral and neuropsychological research suggests that delayed actions rely on different neural substrates than immediate actions; however, the specific brain areas implicated in the two types of actions remain unknown. We used functional magnetic resonance imaging (fMRI) to measure human brain activation during delayed grasping and reaching. Specifically, we examined activation during visual...
متن کاملEffects of Visual Experience on the Human MT+ Functional Connectivity Networks: An fMRI Study of Motion Perception in Sighted and Congenitally Blind Individuals
Human middle temporal complex (hMT+) responds also to the perception of non-visual motion in both sighted and early blind individuals, indicating a supramodal organization. Visual experience, however, leads to a segregation of hMT+ into a more anterior subregion, involved in the supramodal representation of motion, and a posterior subregion that processes visual motion only. In contrast, in con...
متن کاملTitle: Integration of Visual and Tactile Signals from the Hand in the Human Brain: an Fmri Study. Authors
24 25 In the non-human primate brain, a number of multisensory areas have been described 26 where individual neurons respond to visual, tactile and bimodal visuo-tactile 27 stimulation of the upper limb. It has been shown that such bimodal neurons can 28 integrate sensory inputs in a linear or non-linear fashion. In humans, activity in a 29 similar set of brain regions has been associated with ...
متن کاملMental rotation and object categorization share a common network of prefrontal and dorsal and ventral regions of posterior cortex.
The multiple-views-plus-transformation variant of object model verification theories predicts that parietal regions that are critical for mental rotation contribute to visual object cognition. Some neuroimaging studies have shown that the intraparietal sulcus region is critically involved in mental rotation. Other studies indicate that both ventral and dorsal posterior regions are object-sensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropsychologia
دوره 42 8 شماره
صفحات -
تاریخ انتشار 2004